Meta-Analysis on Postoperative Pneumonia
dcv-pneumonia.Rmd
Primary analysis: Paul-Mandel without Hartung-Knapp-Sidik-Jonkman (HKSJ) modification
pm <- rma(yi, vi, data=dat, method="PM")
forest(pm,
atransf=exp,
at=log(c(0.01, 0.1, 0.5, 1, 4, 10)))
These results agree with the paper (Fig 2, top).
Sensitivity analysis
Sensitivity analysis 1: FE model
fe <- rma(yi, vi, data=dat, method="FE")
forest(fe,
atransf=exp,
at=log(c(0.01, 0.1, 0.5, 1, 4, 10)))
Note: The standard RE model without HKSJ modification is identical (not shown):
re <- rma(yi, vi, data=dat, method="REML")
Sensitivity analysis 2: Paule-Mandel with HKSJ modification
pmhk <- rma(yi, vi, data=dat, method="PM", test="knha")
forest(pmhk,
atransf=exp,
at=log(c(0.01, 0.1, 0.5, 1, 4, 10)))
Sensitivity analysis 3: Odds ratios (Paule-Mandel without HKSJ modification)
dat.OR <- escalc(measure="OR",
ai=c(3, 5, 2, 0, 1),
bi=c(32, 39, 43, 15, 24),
ci=c( 6, 7, 4, 1, 2),
di=c(29, 35, 41, 14, 23),
slab=c("Mahmoud et al, 2017",
"Li et al (Standard), 2020",
"Li et al (OLA), 2020",
"Ammar et al, 2021",
"Yao et al, 2020"))
Results are similar:
pm.OR <- rma(yi, vi, data=dat.OR, method="PM")
forest(pm.OR,
atransf=exp,
at=log(c(0.01, 0.1, 0.5, 1, 4, 10)))
Sensitivity analysis 4: leave-one-out analysis
leave1 <- leave1out(pm)
forest.default(x=leave1$estimate, ci.lb=leave1$ci.lb, ci.ub=leave1$ci.ub,
slab=paste("Omitting ", leave1$slab, sep=""),atransf=exp,
at=log(c(0.15, 0.25, exp(pm$b), 1, 4)), xlim=log(c(0.01, 4.5)),
refline=pm$b
)
lines(x=log(c(1, 1)), y=c(0, 6))
The results of the leave-one-out sensitivity analysis agree with the paper (page 20, bottom, different order)
Funnel plot
funnel(pm, main="Standard Error")
regtest(pm)
#>
#> Regression Test for Funnel Plot Asymmetry
#>
#> Model: mixed-effects meta-regression model
#> Predictor: standard error
#>
#> Test for Funnel Plot Asymmetry: z = -0.4407, p = 0.6594
#> Limit Estimate (as sei -> 0): b = -0.1608 (CI: -2.1656, 1.8441)